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ABSTRACT

We demonstrate how the concepts of algebraic representabil-
ity and strongly-local reductions developed here and in [20]
can be used to characterize the computational complex-
ity /efficient approximability of a number of basic problems
and their variants, on various abstract algebraic structures
F. These problems include the following:

1. Algebra:Determine the solvability, unique solvability,
number of solutions, etc., of a system of equations
on F. Determine the equivalence of two formulas or
straight-line programs on F.

2. Optimization:Let ¢ > 0.

(a) Determine the maximum number of simultane-
ously satisfiable equations in a system of equa-
tions on F; or approximate this number within a
multiplicative factor of n€.

(b) Determine the maximum value of an objective

function subject to satisfiable algebraically-expressed

constraints on F; or approximate this maximum
value within a multiplicative factor of n®.

(c) Given a formula or straight-line program, find
a minimum size equivalent formula or straight-
line program; or find an equivalent formula or
straight-line program of size < f(minimum).
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Both finite and infinite algebraic structures are considered.
These finite structures include all finite non-degenerate lat-
tices and all finite rings or semi-rings with a nonzero element
idempotent under multiplication (e.g. all non-degenerate fi-
nite uwnstary rings or semi-rings); and these infinite struc-
tures include the natural numbers, integers, real numbers,
various algebras on these structures, all ordered rings, many
cancellative semi-rings, and all infinite lattices with two el-
ements a,b such that a is covered by b.

1. INTRODUCTION AND PROBLEM STATE-

MENTS

We study the complexity and approximability of a number
of problems involving computations on algebraic structures,
including both finite and infinite algebraic structures. Such
problems arise in diverse application areas including digital
circuit design, simulation, analysis, and fault-diagnosis [15]
! lexical analysis and code optimization of computer pro-
grams [3]?, relational and logical database query process-
ing [43])®, computational algebraic geometry and robotics
[5], combinatorial and numerical optimization [21], fixed-
precision numerical computation [21]4, model-checking and
verification of finite-state processes and discrete dynamical
systems [8], and the analysis of finite and discrete dynamical

1Using our terminology, the various methods in these ref-
erences for testing postulated faults in acyclic gate-level
and/or transistor-level networks are equivalent to solving
systems of equations on various finite lattices, where the sys-
tems of equations also result from the networks by strongly-
local reductions. Our constructions actually show, that
the problems of determining the testability of these vari-
ous kinds of faults are strongly-local inter-reducible with the
problem 3SAT, and hence, with each other.

*For example, our results on the complexity of straight-
line program equivalence and approximate minimization
problems on the structures LANG({0,1}*) and FIN-
LANG({0,1}") apply directly to LEX programs.

30ur results on the complexity of formula and straight-
line program equivalence and approximate minimization
problems on the structures TUPLES({0,1}) and BIN-
RELATIONS(U), i.e. finite sets of k- tuples (k > 1) of 0’s
and 1’s under the operations of U and cartesian product and
finite binary relations on an infinite set U under the opera-
tions of U and composition or under the operations of U and
join, apply directly to query processing for both relational
and logic databases

“The proofs of our hardness results for solving systems of
equations on various finite rings, finite semi- rings, and finite
algebras also apply to solving systems of equations on the
natural numbers, integers, reals, complex numbers, real and
complex tensors, etc., when discretized.



systems [38]3. The complexity and more recently approx-
imability of decision and optimization of algebraic problems
over various algebraic structures has been the subject of a
number of recent papers. In this paper, our goals are as
follows:

1. to demonstrate the power, wide applicability, natural-
ness and simplicity of algebraic representability and associ-
ated strongly-local reductions as developed here and in [20]
in characterizing the complexities/efficient approximability
of algebra and optimization over many abstract algebraic
structures;

2. to develop techniques, concepts, and a unified methodol-
ogy, for characterizing (preferably simultaneously) the com-
plexities/efficient approximability of the problems (1)-(12)
below, for many different structures, when instances are
specified by standard specifications, hierarchically, period-
ically /dynamically, recursively, etc.;

3. to develop techniques, concepts, and a unified methodol-
ogy, for characterizing the complexity/efficient approxima-
bility of algebraic problems, that can be used to characterize
complexities, ranging inclusively from P-/ NP-hard to un-
decidable; and

4. assuming P#NP, P#PSPACE, etc. , to discover how
much and what kinds of non-linearity suffice to make solving

a system of non-linear equations on an algebraic structure
F hard.

We demonstrate simultaneously how algebraic representabil-
ity and strongly-local reductions enable us to characterize in
a unified way the complexity/efficient approximability, not
only of the problems (1)-(12) below, but also of many of
their variants obtained by varying (i) the kind of instance,
e.g. formulas, straight-line programs, systems of equations,
(ii) the kind of specification, e.g. hierarchical and dynamic
specifications, and (iii) the class of algebraic structures on
which problems are defined, or by restricting (iv) problems
to bandwidth- or treewidth-bounded instances or to planar
or d-near-planar instances as defined in [4, 41, 37]. Thus for
example using the concepts of algebraic representability and
strongly-local reductions, we characterize simultaneously the
complexity/efficient approximability of problems (1)-(12)
below, for formulas, straight-line programs and acyclic net-
works, for systems of equations, etc., on any non-degenerate
lattice with elements a,b, such that b covers a and on any ring
or finite semi-ring with an element x # 0 such that z = z -z,
when specified by standard, hierarchical, or dynamic specifi-
cations. Moreover, we can characterize simultaneously both
the sequential and parallel complexity of these problems.
Our bounds are always tight for finite structures. Many of
our bounds, for particular infinite structures, are also prov-
ably tight. Our results are summarized in Section 2 and
their significance including comparison with relevant results
in the literature is discussed in Section 3. Due to lack of

5For example, we can show a direct one-to-one correspon-
dence between paths in the phase spaces of finite discrete dy-
namical systems and satisfying assignments of dynamically-
specified satisfiability problems on various finite domains.
This correspondence extends directly to finite discrete dy-
namical systems when specified hierarchically.

space, additional proof sketches can be obtained from the
authors.

1.1 Problemsand algebraicstructur esconsid-

ered and naming corvention
Throughout this paper, F is an algebraic structure; and € >
0. We consider the following problems:

A. Algebra: Let £ be a system of equations and Fi, F>
be two formulas or straight-line programs on F. (1): De-
termine if £ has a solution, and if so find a solution. (2):
Determine if £ is uniquely satisfiable. (8): Determine the
number of solutions of £. (4): Determine if F; and F> are
equivalent, given values for f’s (input) variables.

B. Optimization. (5): Determine the maximum num-
ber of simultaneously satisfiable equations of a system & of
equations on F; and (6): approximate this maximum within
multiplicative factors of € or of n°. (7): determine the max-
imum value of a linear objective function f on F, subject to
algebraically-specified constraints on F; and (8): approxi-
mate this maximum within multiplicative factors of € or of
n¢. (9)-(10): given a formula or straight-line program F
on F, find a minimum size equivalent formula or straight-
line program; and, (11)-(12): find an equivalent formula
or straight-line program of size < f(minimum), e.g. (1+¢)
times minimum.

We denote the problems of determining the solvability of,
unique solvability of, the maximum number of simultane-
ously satisfiable equations of, the maximum number of a
distinguished set of variables set equal to one in a satisfying
assignment of, and the cardinality of the set of solutions of
a system of equations on F by SAT(F), UNIQUE-SAT(F'),
MAX-SAT(F), MAX-DONES-SAT(F), and #-SAT(F),
respectively. We denote the problems of determining the
equivalence of two formulas or of two straight-line programs
Fi, F> on F by FORM-EQUIV(F) and SLP-EQUIV(F).
(To simplify the statements of our results unless stated ex-
plicitly otherwise, we assume that these problems are re-
stricted to systems of equations with no more than 1 occur-
rence of an operator on each side of a equation.) We denote
the problems of determining the solvability of a system of
linear equations on F, the {0, 1}-solvability of a system of
linear equations on F, and the feasibility of a system of lin-
ear equalities on the integers by LINEAR- SAT(F), {0,1}-
LINEAR-SAT(F), and ILP-FEASIBILITY, respectively.
For these last three problems, we make no restrictions on
the numbers of operators allowed on other side of equations
or inequalities. We denote the problem II, when instances
are specified hierarchically as in [27, 32], etc., by H-II. We
obtain results, for both finite and infinite structures F, in-
cluding: all rings or finite semi-rings with a nonzero element
idempotent under -, all rings without nonzero zero divisors,
the natural numbers N, integers Z, real numbers R, com-
plex numbers C, various algebras on and all bounded fized-
precision versions of the integers, reals, and complex num-
bers, etc., all ordered rings, many cancellative semi-rings,
the sets of languages on and of finite languages on {0,1}"
under union and concatenation, all lattices with two ele-
ments a,b such that a is covered by b, etc.



2. SUMMARY OF RESULTS

We obtain both easiness results (for exact solvability and
for efficient approximability) and hardness results. Ex-
amples of our results are summarized in Figure 1 and
META-THEOREMS 2.1-2.2. Figure 1 summarizes the rel-
evant complexity-theoretic properties of strongly-local re-
ductions; and META-THEOREMS 2.1-2.2 summarize many
of our results on the existence of strongly-local reductions
and, consequently, the complexity/efficient approximability
of the problems (1)-(12) above, for finite and for infinite
algebraic structures respectively.

META THEOREM 2.1: FINITE STRUCTURES ONLY.

I. General Efficient Approximations for Finite Struc-
tures: Let F be any finite algebraic structure.

1. There exists ¢ > 0 such that the problems of ap-
proximating the maximum numbers of simultaneously sat-
isfiable equations in a system of equations, in a system
of hierarchically- specified equations, or in a system of
dynamically-specified equations on F, with € times optimum
are solvable in polynomial time.®

2. For all § > 0, there exists a PTAS, for approximating the
problem MAX- SAT(F), when this problem is restricted to
d-near-planar instances.

3. For all finite (not necessary total) algebraic structures F,
there exists an integer k£ > 1 such that the problem SAT(F)
is (k-strongly-local+parsimonious+ L)- reducible to the prob-
lem 3SAT. ®

II. General Hardness Results for Finite Structures:
Let F be any finite non-degenerate lattice or any finite
ring or semi-ring for which 3z € F such that Vn > 1,
2" # 0. Then, the problem 3SAT is (2- or 1-strongly-
local+parsimonious+ L)-reducible to the problem SAT(F).

5Since the maximization versions of many of these optimiza-
tion problems, when instances are specified hierarchically or
by various kinds of dynamic specifications are PSPACE-
, DEXPTIME-, NDEXPTIME-, EXSPACE-hard, or
even undecidable [31], we see that our concepts and tech-
niques can also be used to develop efficient approximation al-
gorithms, for natural algebraic optimization problems rang-
ing in complexity from NP-hard to undecidable. Previous
to our work, no such general general easiness results were
known, for natural provably hard problems, much less for
such large classes of natural provably hard problems.

"By PTAS we mean a polynomial time approzimation
scheme as defined in [14]. All of these schemes are actu-
ally NC approzimation schemes. Recalling the previous
footnote, this result yields a natural infinite collection of
provably hard optimization problems with NC approzima-
tion schemes. Previously, no such general infinite class of
natural provably hard, as opposed to likely hard(e.g. NP-
hard), but arbitrarily efficiently approximable problems was
known.

8We say that problem II; is “(a+8+7)-reducible” to prob-
lem IT, if and only if II; is reducible to II» by a single reduc-
tion, that is simultaneously an o, a 3, and a 4 reduction.

Comnsequently, the following hold:

4. The problem SAT(F) is both NQL- and S}L‘gn-complete
for NP; the problem #-SAT(F) is #P-complete; and the
problems MAX-SAT(F) and MAX-DONES-SAT(F) are
MAX-SNP- and MAX-II;-complete, and thus, have NP-
hard e and n°) approximation problems [6, 35]. °

5. The problem H-3SAT is (2- or 1-strongly-
local+parsimonious+L)-reducible to the problem H-
SAT(F). Consequently, the problems H-SAT(F) and
H-#-SAT(F) are PSPACE- and #PSPACE-complete,
Also there exist € > 0 such that approximating the prob-
lems H-MAX-SAT(F) and H-MAX-DONES-SAT(F)
within € times maximum and within n® times maximum,
respectively, are PSPACE-complete. 1°

META THEOREM 2.2: INFINITE STRUCTURES

Let € > 0. Let F be an algebraic structure.

1. There exists e > 0 such that the problem SAT(F) is 1-
strongly-local reducible to the problem of approximating the
maximum number of simultaneously satisfiable equations
of a system of equations on F within n® times maximum.
(Here, we place no restrictions on he numbers of operators
appearing on the sides of the equation.)

2. Suppose 0 € F. Let II be the problem of determining if a
formula on F denotes the constant function 0. For all func-
tions f : N—{0} — N—{0}, the problem II is 1-strongly-local
reducible to the problem of finding an equivalent formula of
size < f(min), where min is the size of an equivalent formula
of minimum size.

3. The problems FORM-EQUIV(FIN-LANG({0,1}"))
and SLP-EQUIV(FIN-LANG({0,1}")) are coNP- and
coNDEXPTIME-complete, respectively.!!

4. [Complexity of ILP Feasibility and Real-Closed
Fields, Restricted to Bandwidth- or Treewidth-
Bounded Instances:|There exists a fixed integer £ > 1
such that the problems ILP-FEASIBILITY and SAT(R4)
are weakly-INP-complete, when restricted to systems of lin-
ear constraints and algebraic equations with integer coefli-
cients on R4 with bandwidth and/or treewidth < k. Unless

9The concepts of NQL- and Sﬁ,‘gn-completeness are
stronger than the concept of NP-completeness and are de-
fined in [40, 41], respectively. The concepts of #P-, MAX-
SNP-, and MAX-II;-completeness are defined in [44, 36,
35], respectively.

'9The counting complexity class #-PSPACE defined by [26]
is the analogue for PSPACE of the counting complexity
class #P for NP.

" Thus there is a provable exponential gap between the com-
plexities of the formula- and of the straight-line-program-
equivalence problems, for these structures. By direct ex-
pansion, there is at most a singly exponential gap between
the complexities of these two problems, for any abstract al-
gebraic structure F.



P=NP, these problems are not strongly-NP-complete. 2

5. [Results for Ordered Rings or Cancellative Semi-
Rings]: Let F be any ordered unitary ring or cancellative
semi-ring, that is the non-negative part of an ordered uni-
tary ring. Then the problem SAT(F) is 1-strongly-enforcer
or 1-strongly-local bounded tt-reducible!® to each of the fol-
lowing problems:

i. UNIQUE-SAT(F); ii. for all £ > 1 determine if a system
of equations on F has exactly k or has > k distinct solutions;
iii. determine if a system of equations on F has an infinite
number of solutions; iv. determine the maximum number
of simultaneously satisfiable equations in a system of equa-
tions on F'; v.there exists ¢ > 0 approximating the maximum
number of simultaneously satisfiable equations of a system
of equations on F within n® times maximum; vi.determine
the maximum value (MAX) taken on by a linear objective
function subject to satisfiable equational constraints on F;
and vii.there exists € > 0 such that approximating the max-
imum taken on by a linear objective function subject to
satisfiable equational constraints on F within n° times max-
imum. Moreover for any ordered ring F, viii.the problem
SAT(F) is (1-strongly-local+ parsimoniously)-reducible to
the problem of determining if a 4th degree multiple-variable
polynomial on F has roots in F. Finally letting F equal N
or Z, there are no algorithms, for any of the problems i-viii.
(These last undecidability results follow immediately from
the results for the problems of i-viii and the well-known un-
decidability of Hilbert’s 10th problem [33, 12]. Among other
things, these undecidability results generalizes Jeroslow’s re-
sult [23], that there is no algorithm, for integer programming
subject to quadratic constraints, by showing that there are
also no algorithms for approximating integer programming
subject to quadratic constraints.)

6. All of the strongly-local reductions and consequent
hardness results of items 4 and 5 of META-THEOREM 2.1,
for the problems SAT(F) and MAX-SAT(F), also hold
for any ring or finite semi-ring with a non-zero element x
such that z2 = z. In addition all of the strongly-local re-
ductions and consequent hardness results of items 4 and
5 of META-THEOREM 2.1, for the problems SAT(F), #-
SAT(F), and MAX-SAT(F), also hold, for the following:
(a)any infinite lattice with elements a,b where a is covered
by b, (b)any infinite ring with no non-zero zero divisors,
and (c)the problems LINEAR-SAT(N), {0,1}-LINEAR-
SAT(N), and ILP-FEASIBILITY. Moreover, there exists
an € > 0 such that approximating the maximum value
of a linear objective function on Z subject to linear con-
straints and to hierarchically-specified linear inequality con-
straints on Z within n° times maximum are NP-hard and
PSPACE-hard, respectively.

12Let k > 1 be a fixed integer. Assuming P #NP, this results
shows, that the known polynomial time algorithms for ILP
and for solving a system of equations on R 4, for instances
with < k variables [5, 28], cannot be extended (while re-
maining polynomial time bounded) to apply to instances of
bandwidth or of treewidth < k.

13Here, #t stands for truth-table. These more general vari-
ants of strongly- local reductions have essentially the same
complexity-theoretic properties as pure strongly-local reduc-
tions.

7. The problem 3SATWP is I-strongly-local and A-
reducible’ to the problem LPFEASIBILITY. Consequently
since the problem H-3SATWP is PSPACE-hard and there
exists € > 0 such that approximating the problem H-MAX-
DONES-3SATWP within a multiplicative factor of n® times
maximum is also PSPACE-hard, so are the the problems
of approximating the maximum value of a linear objective
function on Q subject to satisfiable hierarchically-specified
linear inequality constraints on Q.

3. SIGNIFICANCE

The following additional properties of re-
sults/constructions/techniques are also of interest.

1. Usually the formulas, straight-line programs, systems of
equations, recursive function specifications, etc. , occuring
in our proofs contain only a bounded number of distinct
constants. Moreover, usually the only properties of these
constants used are properties that hold, for each algebraic
structure of the same kind, e.g. the properties of the additive
and multiplicative identities common to all unitary rings or
semi-rings. This enables us to obtain complexity results,
for a structure that are independent both of the structure’s
presentation and its cardinality.

2. By restricting ourselves to strongly-local reductions, we
know a priori, that all properties of Meta-Result 1 hold
for them. Thus for example, we know that our reduc-
tions relate simultaneously both the sequential and paral-
lel complexities of problems, when instances are specified
straight-line programs, acyclic computational networks, sys-
tems of equations, hierarchically- and recursively-specified
functions and systems of equations, periodically-specified
formulas and systems of equations, etc. One immediate im-
plication is that all of the hardness results in [31], for the
problems 3SAT and 3SATWP, when instances are spec-
ified by various kinds of dynamic/periodic specifications,
also hold , for the problems SAT(F), #-SAT(F), MAX-
SAT(F), UNIQUE-SAT(F'), etc. and for the algebraic struc-
tures in items 4 of META-THEOREM 2.1 and 4, 5, 6, and 7
of META-THEOREM 2.2, when instances are specified by the
corresponding kinds of dynamic/periodic specifications.

3. Often our proofs, for rings and semi-rings, do not require
that the binary operations + and - actually be total, asso-
ciative, or commutative. One direct implication of this is
that—

e Our hardness results, for finite rings and semi- rings,
also hold, for discretized bounded-precision versions
of the natural numbers, integers, rationals, reals,
Gaussian integers, complex numbers, tensors on these
structures, etc. Due to wunder-flow and over-flow,
these discretized bounded-precision versions are actu-
allyneither rings nor semi-rings.

4. [Some General Complexity Theoretic Implications:]) The
variant problems, for several basic algebraic structures F,
provide natural yardsticks, for measuring complexity and/or

"“The concept of A-reducibility defined in [35] is stronger
than the concept of L-reducibility



efficient approximability. They play roles in characteriz-
ing the complexities of algebraic and numerical optimiza-
tion strongly analogous to the roles played by the prob-
lems 3SAT, MAX-3SAT, MAX-DONES-3SAT, #-3SAT,
in characterizing the complexity or efficient approximability
of combinatorial problems (e.g. in [14, 36, 35]). By using
infinite structures F, we can obtain results for higher lev-
els of complexity including undecidability. Thus recalling
items 1,2,5, and 7 of META-THEOREM 2.2, our results are a
significant step towards finding general techniques that can
be used to simultaneously prove lower bounds from NP to
NDEXPTIME and even to Undecidability.

5. [Progress on open questions in the literature:] Our re-
sults significantly extend earlier results and are a strong
step towards answering open questions in the literature.
Specific questions related to our work include: (i) Ladner
[26] to identify new natural #PSPACE-hard and -complete
counting problems;

(ii) Condon et al. [9, 10] to identify natural classes
of PSPACE-hard optimization problems with provably
PSPACE-hard ¢-approximation problems, and the results
of [25, 11] providing dichotomy results for the problems
MAX SAT(S).

e Our general techniques simultaneously imply the
MAX-SNP-hardness and MAX-II;-hardness of the
problems MAX-SAT(F) and MAX-DONES-SAT(F)
and the PSPACE-hardness of approximating the
problems H-MAX-SAT(F) and H-MAX-DONES-
SAT(F), for suitable large ¢ < 1 and for all € > 0
respectively, over infinitely many non-isomorphic alge-
braic structures including all those of items 4 and 6 of
META-THEOREMS 2.1 & 2.2, respectively. No analo-
gous such general results were known previously.

(iii) Zuckerman [45] on NP-hardness of constrained prob-
lems to PSPACE-hardness of approximating succinctly
specified constrained optimization problems; and

e Our results show that most of Zuckerman’s hard-
ness results, for approximation problems, are actu-
ally implied by strongly-local reductions of the prob-
lem UNIQUE-3SAT. Consequently among other things,
we get analogous hardness results, for these approxi-
mation problems when restricted to planar or UD in-
stances and when instances are specified hierarchically,
dynamically /periodically, etc.

(iv) the results of Khanna and Motwani [24], our results [17]
and those of Trevisan [42] on (NC)-PTAS for MAX SAT(S)
restricted to planar and near-planar instances.

e We show that PTASs exist, for the problem MAX-
SAT(F) restricted to near-planar instances, for all fi-
nite algebraic structures; and that this is an immediate
implication of our earlier PTAS for the problem PrL-
MAX-3SAT in [17].

(v) Our strongly-local L- and strongly-local A-reductions of
the problems MAX-3SAT and MAX-DONES-3SAT to the
problems MAX-SAT(F) and MAX-DONES-SAT(F), re-
spectively, for all structures F satisfying items 4 and 8 of
META-THEOREMS 2.1 & 2.2, respectively, significantly ex-
tend the collection of natural problems known to be hard to
approximate (assuming P£NP).

6. Direct analogues of our hardness results, for approxi-
mating minimum equivalent formulas, also hold for other
classes of algebraic, logical, or linguistic descriptors includ-
ing 3CNF formulas, Boolean formulas and acyclic Boolean
networks, quantified Boolean formulas, regular expressions,
nondeterministic FSA, nondeterministic PDA, CFGs, etc.
Thus for example, all f(min)-bounded approximations for
minimum equivalent 3CNF formulas, Boolean formulas and
acyclic Boolean networks, quantified Boolean formulas, reg-
ular expressions, nondeterministic FSA, nondeterministic
PDA, and CFGs are intuitively as hard as the corresponding
satisfiability or “={0,1}"” problems. Thus all approxima-
tions for these problems are coNP-, coNP-, PSPACE-,
PSPACE-, PSPACE-hard, have no algorithms, have no
algorithms, respectively.

7. Our strongly-local reductions for ordered rings and semi-
rings in item 6 of META-THEOREM 2.2 problem instances
with m < 1 variables into problem instances with O(m), and
in some cases, with m + O(1) variables. In which case, these
reductions also preserve upper bounds of the form —Problem
II is solvable deterministically in polynomial time, for prob-
lem instances with a fixed number of variables, where the
degree of the polynomial upper bounds grows polynomially,
linearly, quadratically, etc., in the number of variables oc-
curring in the instance. (Recall that such upper bounds are
known for solving systems of polynomial equations on R 4.)

8. Assuming P # NP, we can show that the conditions of
items 4 and 8 of Meta-Theorems 2.1 and 2.2 are not neces-
sary for the hardness of the problem SAT(F). In fact, we
can show the NP-hardness of the problem SAT (F), for finite
structures F such that both Vz € F, x* = 0 and Vu,y,z €
F, z-y-z = 0. These additional hard rings include rings
of differential forms on vector spaces over finite fields; and
thus, they may be of independent interest. Additionally for
all ordered rings F,we can show that the the problem 3SAT
is (1-strongly-local+parsimonious+ L)-reducible to the prob-
lem of determining if a system of peice-wise linear equations
on F has a solution. These two results show how little non-
linearity is required, for the problem of determining if a
system of non-linear equations on F to be hard.

4. OVERVIEW OF TECHNQIUES

The concepts and methodology used here are based upon
the concepts of algebraic representability (a modification
for algebraic structures of the concept of relational repre-
sentability as defined in [39, 20]) and strongly-local replace-
ments/reductions defined in [20] as extended here to apply
to the problems SAT(F), #-SAT(F), MAX-SAT(F), etc.,
for various abstract algebraic structures F. Recall that un-
less stated explicitly otherwise, we restrict our attention to
systems of equations with < 1 occurrence of an operator on
each side of an equation. We note that—



e For all fixed integers k > 1, exactly analoguous
results hold, when we restrict our attention to
systems of equations with < k occurrences of op-
erators on each side of an equation or comparison
operator.

For each algebraic structure F considered, there exist dis-
tinct constants ai,...,ar (k > 0) such that, the only con-
stants appearing in the formulas, straight-line programs,
systems of equations, etc., on F occurring in our proofs are
the a; (1 < i< k). Usually k£ < 2.

1. Algebraic/Relational Representability: Let
F; and F» be algebraic structures with domains D; and
D, finite sets of finite- arity operators {o1,1,...,01,1}
and {02,1,...,0, 41}, and finite sets of allowed constants

{a1,1,...,a;1,2} and {a2,1,...,a, ;2 }, respectively. For sim-
plicity here, we assume that all of these operators are binary.
We define the sets Sy, and Sy, of relations (on Dy and D>)
defined by F1 and F3, respectively, as follows:

1. Sp, consists of the following set of relations on D;:
Rio0={(z,y) | z,y € D1 and = = y}, for all con-
stants a1,; in D1, Ra, ,={a1,}, and for all operators
01,5, ROl,jz{(xa Y, Z) | z,Y,2 € D1 and z = 01,5 (may)}'

2. Sy, consists of the following set of relations on Ds:
R2,0={(a,b) | a,b € Dy and a = b}, for all constants
agy in D, Ra, ,={as,}, and for all operators oy ;r,
Ro, ,={(a,b,¢) | a,b,c € D3 and ¢ = 05,51 (a, b)}.

Algebraic/relational representability formalizes the intuitive
concept that the relations in Sy, are ezpressible (or extend-
ing the terminology from [39] are representable) by finite
conjunctions of the relations in Sy, .

DEFINITION 4.1. We say that Fi s algebraically-
representable by Fo if and only if, there exists a 1 — 1
function ® D, — Ds such that, for all relations R(z),
R(z,y), or R(z,y,z) € S¥,, there exists a finite conjunction
CRr(z); CRr(z,y)) 07 CR(z,y,2), of relations in Sy, applied to
the wvariable(s) x, or x,y, or z,y,z,respectively, additional
eristentially-quantified variables, and constants of F2 such
that,

o [etting X be the set of tuples of elements of D1 that
satisfy relation R and letting Yr be the projection of
the set of tuples of elements of Da that satisfy conjunc-
tion Cr on their first, first and second, or first,second,
and third components, Xg = ®~!(Ygr). *

2. Local Replacements: Let £ > 1. The second
basic component of our methodology consists of the for-
malization and systematic investigation of the properties of
the classes of k-strongly-local and k-strongly-local-enforcer
replacements and reductions, to the problems SAT(F), #-
SAT(F), MAX-SAT(F), etc. Meta-Result 1 in Figure 1

5Here, & !((a)) = (@7 1(a), @ '((a,b)) =
(q)_l(a),q)_l(b))a and (I)_l((a,b,c)) =
(@ *(a), @1 (b), @ !(c)).

summarizes the complexity-theoretic properties of these re-
ductions. '® Here, we only describe 1-strongly-local and
1-strongly-local enforcer reductions intuitively.

Let £ = (eq1,- -+ ,eqm) with m > 1 be a finite sequence of
equations < lhs >=< rhs > on F, where no more than
one operator of F occurs in < lhs > and no more than one
operator of F occurs in < rhs >. Using distinct new tempo-
rary variables, we can replace each such equation by a fixed
size conjunction of relations in the set Sg, i.e. the relations
defined by F. Let F and F' be distinct algebraic structures.
We define k-strongly-local and k-strongly-local-enforcer re-
ductions of the problem SAT(F) to the problem SAT(F’)
to be k-strongly-local and k-strongly-local-enforcer replace-
ments from the set of all finite sequences of relations in Sg
to the set of all finite sequences of relations in Sgr, that are
also reductions. Intuitively, Vk, in k-strongly-local replace-
ments we have templates, to be treated as macros, with the
same template for each variable and distinct templates for
each relation in Sg. Details about macro expansions and
the the way the variables are replaced depend very simply
on the value of k.

Specifically, this reduction is specified by ¢ templates
Temp, ... Temp:, one for each of the relations Ti,...,T:
in the set Sy, plus (optionally) one template Temp, (the
variable template) corresponding to the variables as fol-
lows: Let f = T;; A... AT;,, (m > 1) be a conjunction
of the relations in St applied to the variables x1,...,z,
(n > 1). The formula g = R(f) is the conjunction of the
Temp(T;;) for 1 < j < m optionally anded with one oc-
currence of Temp, for each variable z; (1 < 7 < n) of f.
Here, Temp(T;;) is specified as follows: Let T;; be the re-
lation T; (1 < £ < t). Let the variables occurring in Ty,
in order be zj,,...,z;,. Then the (dummy) variables of
Temp, are in order zj,,...,2j,,V1,--,Um, and Temp(T;;)
results from T'emp, by replacing all occurrences of the vari-
ables zj,,...,%;, by occurrences of the of the variables
Zji,- .., L, respectively, and by replacing all occurrences
of the variables vy, ..., vm, by new variables wy, ..., wm, re-
spectively, local to the conjunction Temp(T;;). We call such
an “intuitively” local reduction a I-strongly local reduction.
More generally ,a k(> 2)-strongly local reduction is specified
analogously except that each of the variables v; is replaced
by k new variables z;, ... ,zJ'-c and each of the variables z; in
Temp(Ts; ) is replaced by k new variables m;, - ,x;-“. Formal
definitions of these concepts can be found in [20].

The concepts of algebraic representability and strongly-local
reductions combine together naturally as illustrated by the
following theorem:

THEOREM 4.2. Let F1 and Fy be algebraic structures such
that F1 is algebraically representable by Fo. Then, the prob-
lem SAT(F1) is 1-strongly-local reducible to SAT(F5). 7.

8Tn contrast, previous researchers, e.g. [14], have discussed
the intuitive concept of reductions by local replacement; but
they have not gone far in formalizing, or in characterizing
the complexity-theoretic properties of, their concepts.

In [20], we present a similar theorem relating the concepts
of relational representability and 1-strongly-local reductions



1. They are simultaneously O(n - logn) time-, linear
size-, and O(logn) space-bounded on deterministic
multiple-tape Turing machines; and they are NC(1)
using only O(n) processors.

2. They preserve treewidth- and (often) bandwidth-
bounds. They can also be modified easily to preserve
near-planarity.

3. They extend directly to efficient reductions, when
instances are specified by straight-line programs, hi-
erarchically, recursively, or dynamically, as defined
in [27, 32, 34].

Figure 1: Meta-Result 1. Some Basic Properties of
Strongly-Local Reductions.

5. TERMINOLOGY AND SELECTED DEF-
INITIONS

Generally, we consider homogeneous total algebraic struc-
tures S = (S,+,-) with two binary operations + and -,
called addition and multiplication, respectively. We assume
that structures are non-degenerate, i.e. have at least two
elements. We restrict our attention to such algebraic struc-
tures having only a finite set of operators, each operator of
which is itself of finite-arity. The additive (multiplicative)
identity of S, when it exists, is usually denoted by 0 (by 1).
We define ring as in [30], except that we do not require rings
to have multiplicative identities. We define semi-ring F by
F = (S,+,-,0), where + is an associative and commutative
binary operation on S and - is an associative binary opera-
tion on S that distributes over + on both the left and the
right. We say that a ring or semi-ring is unitary iff it has a
1. [NOTE: Thus unlike [30, 13], we do not assume that all
rings or all semi-rings have a 1.] A ring or semi-ring R is
said to cancellative iff, for all z,y,2 € R, x-y = © - z implies
r=0o0ry=z

We denote the problem of determining if a 3CNF formula
with exactly 3 non-negated literals/clause, has a satisfy-
ing assignment satisfying ezactly 1 literal per clause by
EXACTLY1-EX3MONOTONESAT. NOTE: The problems
3SAT and EXACTLY1-EX3MONQTONESAT are known to
be 1-strongly-local inter-reducible by reductions that are also
parsimonious and L [20]. Finally, see [36, 35, 16] for the defi-
nitions of L- and A-reductions and the respective complexity
classes MAX-SNP- and MAX-II;.

6. SELECTED PROOF SKETCHES

We present several general theorems on the complexities of
determining the solvability of systems of equations over var-
ious finite lattices, rings, and semi-rings. When we restrict
our attention to finite structures, we assume that in each
case we have a set of constant symbols, denoting in a one-
to-one fashion, the elements of the structure. Recall that
a lattice L = (S, A, V) is an algebraic structure where the
operations V and A are binary operations on S that are
commutative, associative, and idempotent, such that for all
T,y €S,

zV(EAy)=zA(zVy) ==z

Finally, recall that an element a of a lattice L ”is covered
by” an element b of L if a < b in the partial order defined
by the operations of L; and there is no element ¢ of L such
that a < ¢ < b [7, 30].

THEOREM 6.1. For all lattices L with elements a and b
and constant symbols A and B denoting a and b, respec-
tively, such that a ”is covered by” b, the problem EXACTLY1-
3MONOTONESAT is (2-strongly local+parsimonious+
planarity-preserving)-reducible to the problem SAT(L).

Proof sketch: Let n,m > 1 be integers. Let f =
¢iA,...,cm be a monotone 3CNF Boolean formula with
exactly 3 literals per clause with distinct variables z; (1 <
1 <n). Let y; (1 <1i<n)ben distinct new variables. The
resulting system of equations EQ(f) on L is given by —

1.Vi, 1<i<mn A< uz,y <B(ie z;ANA = A,
z; V B = B, etc.)
2. Vi, 1<i<mn,z; ANy;=Aand z; Vy; = B.

3.Vj, 1<j<m,let ¢;j =zxj Vzj, Vzj;, then EQ(f)
also includes the equations- (zj V zj, V zj;) = B,
(Tjr Nzjy) = A, (w5, Awjp) = A, and (25, Axjs) = A

We claim that “there is an assignment of truth-values to
the variables of f such that exactly 1 literal in each clause
is satisfiable” iff ” EQ(f) is satisfiable.” This is implied by
noting the following:

1. By assumption, B covers A, thus A < C < B implies
C=Aor C=B.

2. Given this, for all assignments of values from L to the
variables z;, y; satisfying the equations of items 1 and
2 and for each 7 with 1 <7 < n, one of z; and y; takes
on the value A and the other takes on the value B.

3. Given the above, any assignment of values from L to
the variables x;, ¥; causes exactly one of the (non-
negated) literals in each of the clauses of EQ(F) to
equal B and the other two (non-negated) literals to
equal A.

Finally, it’s not hard to see that this reduction is (2-
strongly-local+parsimonious). to see why it is also pre-
serves planarity of instances. M
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